タスクに応じてロールプレイさせるとChatGPTなどLLMの推論能力は普遍的に向上する

   

大規模言語モデル(LLM)の分野では、その推論能力が日々向上しています。本記事では、最新の研究「Better Zero-Shot Reasoning with Role-Play Prompting」を紹介し、ロールプレイプロンプティングがLLMの推論能力をどのように向上させるのかを探ります。

参照論文情報

関連研究

ロールプレイとは

ロールプレイプロンプティングは、大規模言語モデル(LLM)に対して特定の役割を割り当て、その役割に基づいて推論を行わせる手法です。このセクションでは、ロールプレイプロンプティングの具体的なプロセスと、その背後にある理論的な考え方を詳細に解説します。

役割の割り当て

ロールプレイプロンプティングでは、最初にモデルに特定の役割を割り当てます。この役割は、モデルが推論を行う際の視点や態度を形成します。

例:

  • ユーザー: 「あなたは数学の教授です。」
  • モデル: 「数学の教授として、微分方程式について教えることができます。」

通常状態のChatGPTとロールプレイ状態のChatGPTの比較例


■毎朝AIの最新研究に自動でキャッチアップできるニュースレターはこちら↓


ロールフィードバック

次に、モデルが割り当てられた役割に忠実な応答を生成するためのフィードバック段階があります。この段階での対話は、モデルが割り当てられた役割に対してより具体的な視点を持つことを助けます。

例:

  • ユーザー: 「今日の講義では微分方程式について教えています。」
  • モデル: 「微分方程式は数学の基本的な概念で、物理学、工学、経済学など多岐にわたる分野で使用されます。今日の講義では、一階および二階の微分方程式の解法に焦点を当てます。」

役割の浸透

ロールプレイプロンプティングの成功は、モデルが割り当てられた役割を完全に理解し、その役割に基づいて一貫した推論を行う能力にかかっています。役割の浸透を確保するためには、モデルのロール認識に対して訂正が必要な場合の対処法も考慮する必要があります。

フレームワークは2段階からなります。LLM側からのロールフィードバックも重要です。

ロールプレイ状態のLLMの性能

ロールプレイプロンプティングがLLMの性能にどのような影響を及ぼすのかを理解するために、論文で報告されている実験内容を紹介します。

続きを読むには無料会員登録が必要です。


※ログイン/初回登録後、下記ボタンを押してください。



■特定のテーマに合わせたレポートサービスはこちら↓



■サポートのお願い
AIDBを便利だと思っていただける方に、任意の金額でサポートしていただけますと幸いです。

    AI新着論文を自動で取得し、日本語サマリーを毎日メールで受け取るサービスに申し込みが殺到しています。
    毎日新しく出版されるAIの論文にキャッチアップするのは、「手間がかかる」「読解が難しい」といった問題あります。
    AIDBは、オートで新着論文の探索を行い、❶論文情報❷日本語サマリーを複数掲載するニュースレターサービスを行っています。

    ■サービス概要
    ① AI新着論文の情報を毎日5件自動で収集
    ② 論文のサマリーを記載
    ③ キーワードをカスタマイズ可能
    ④ 受け取り時間帯を指定可能

    下記のフォームから簡単に申し込みが開始できます。
    価格は現在¥500/月で、3日間は無料でトライアルができます。

    キーワードを詳細にカスタマイズしたり、受け取り時間帯を指定するには、こちらのページから申し込みを行なってください。
    下記のボタンからトライアルを開始した場合、デフォルトの設定(生成AI関連の論文)でサービスをご提供します。
    キーワードや時間帯のご変更は申し込み後も可能です。

    ※初めの3日間は無料です。4日目から引き落としを開始いたします。

    業界/カテゴリー

    PAGE TOP