98%の正確性で建造物の劣化を特定(英)【AI論文】

   

イギリスにあるOxford Brookes大学のHuseinら研究者は、建造物の劣化度合い等の状態を把握するのに、画像認識技術を応用することを試みた。これにより、検査の低コスト化とリスクの減少に繋がるはずだと彼らは考えていた。

その研究のポイントはこうだ。

✔️課題
建造物の劣化度合い等の状態を把握するのに、大きな労力がかかっており、また高所での検査では人命の危険性の問題があった。

✔️解決手法
畳み込みニューラルネットワーク(CNN)を用いて、建造物の画像からカビ、劣化、シミ等の欠陥の発見と位置特定を試みた。

✔️結果
トレーニングデータセットにおいて、98%を超える正確さで、建造物の劣化等を把捉することに成功した。

では研究の詳細を見てみよう。

高コスト、ハイリスクな建造物の状態調査

続きを読むには無料会員登録が必要です。


※ログイン/初回登録後、下記ボタンを押してください。

業界から探す

さらに学ぼう!

PAGE TOP