電力需要予測、もっと精度を上げるには?(AI×環境)【論文】

   
↓はてなブックマークで応援お願いします!
このエントリーをはてなブックマークに追加

電力需要予測の重要性が高まっている

近年、情報化・機械化社会の発展に伴い、企業や家庭での電力消費量が増加している。そのため、電力需要予測が、停電防止や最適な発電所の運用等の観点から重要視されている。

電力需要予測に関する取り組みは以前から行われてきたが、既存の手法は精度が低く、適応範囲も狭いため実用的ではない。

韓国にある仁荷大学校のMyoungsoo Kimら研究者は、短期的(分、時間、日)な電力需要の予測という課題に着目し、機械学習手法(LSTM、CNN)を用いて予測モデルの開発を試みた。

その結果、どのぐらいの精度で電力需要を予測できただろうか?続きを読んでみよう。

LSTMとCNNを組み合わせた電力需要予測モデルの開発

Myoungsoo Kimらの研究におけるミッション・手法・結果は以下の通りだ。

続きを読むには無料会員登録が必要です。


※ログイン/初回登録後、下記ボタンを押してください。

    記事をご覧いただきありがとうございます。

    ・サイトや記事へのフィードバック
    ・文献調査のご依頼
    ・広告配信のご依頼
    ・AI人材の雇用相談
    ・AI開発のご相談

    など、何かありましたら、ご連絡ください。

    業界/カテゴリー

    PAGE TOP