客室料金を最適化できるか?混乱する宿泊業を救え(AI×マーケティング)【論文】

   

課題:感染症によりホテルの需要が予測できない

新型コロナウイルスの脅威は、宿泊業にも大きな打撃を与えています。2020年上半期(2020年1月~6月)の宿泊業の倒産件数は、前年比140%増の72件で、2.4倍増となっています。

そんな中、ホテルの客室の需要予測が注目されています。感染症などの予測困難な状況下における客室の需要を予測することができれば、ホテル経営に有効な戦略を立てられるかもしれません。

ホテルの客室の需要を予測するという課題において、実際にどんな研究が行われているのでしょうか。中国にある曁南大学のTianxiang Zhengら研究者の発表を紹介します。

研究者らは、LSTM(Long Short-Term Memory: 長・短期記憶)モデルを構築することで、客室の価格設定の予測を試みたのでした。

テーマ:LSTMモデルによる客室価格の予測

まずはTianxiang Zhengらの研究におけるミッション・手法・結果をまとめました。

続きを読むには無料会員登録が必要です。


※ログイン/初回登録後、下記ボタンを押してください。

↓はてなブックマークで応援お願いします!
このエントリーをはてなブックマークに追加

masashi

投稿者の過去記事

大学院では薬学の研究を行っていました。主に創薬・製造・金融分野におけるAI活用を掘り下げたいと思います。Twitter:@masa05240112

業界ごとに記事を読む

PAGE TOP
0
Would love your thoughts, please comment.x
()
x