MITの研究者がAIで如何にして医薬品承認を促進させたか !?

マサチューセッツ工科大学研究者によれば、機械学習は、精密医療の正確性を向上すべく、ヘルスケア領域に急速に適応されており、また、機械学習はランダムに行われる医療臨床試験を改善することにより、新しい医薬療法や医療機器の開発に役立てることも可能だ。

臨床×機械学習

研究者らは、医薬品が承認される可能性について適切に予測するため、機械学習や統計的手法を用いて医療臨床試験結果のデータの質を高める必要があった。

研究者らは、2つの非公開医薬主要情報データベースから最大量のデータを用いた。

この調査結果は、Harvard Data Science Reviewの初刊号に掲載された。

リスクを最小限に抑えた医療臨床試験は、医薬品などの資源を効率的に活用することを可能とし、失敗を抑え、医薬品の承認を更に早急化させ、費用を抑えることで、新しいセラピー療法の開発に資金を回すことも可能とした。

「多くの研究者が、医薬品の医療臨床試験段階での失敗リスクから大きな影響を受けている。」と、研究リーダーであり、マサチューセッツ工科大学金融工学研究所理事長のアンドリュー・ロー氏は記事で述べている。

「更に正確な医薬品および機器開発のリスク測定により、生体医学への効果的な投資を促進していきたいと考えています。」

投資家、科学者、臨床医、生体医学専門家への医薬品臨床試験の成功の可能性についての情報のみでなく、機械学習科学も、政策決定者にとっても有益なものとなる。

「政策決定者や規制当局にとっても、機械学習の予測値は有益なものとなり、とりわけ高い確率で失敗することが予測できる医薬品表示の組み合わせなどがそれにあたります—このような実例は、生体医学において最も困難な挑戦に注目を集め、そしてより強固な管理と社会公的支援の必要性を強調することとなります。」とロー理事は綴った。

ロー理事と研究者チームは、機械学習と統計的手法を用いて、不足している値と他のモデル値を推定し、より正確な予想から、不足しているデータを補った。

データの組み合わせは多くの場合、組み合わせ交換の機密性を保持したいという意思や、単純に追加のデータを追加する付加価値がないといった理由から、データが不足したままであることが多くあります、と著者は記している。

これまでの全ての医薬品開発データは、完全なデータではない一方で、ほとんどの研究はその事実について触れてはいない。

予測アルゴリズムの力

このコンテンツを閲覧するには無料会員ログインが必要です。会員の方はログインして下さい。
新規無料会員登録はこちら

業界から探す

PAGE TOP